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Abstract The concentration curve of mean activity coef-
ficients to the required power was approximated by a
product function. The product function parameters were
optimized by experimental data for the mean activity
coefficients using a nonlinear regression model. Assuming
that the product function parameters can be determined, the
factor functions are clearly known. The mathematical
complexity and a concept solution are presented. Clear,
reliable results were obtained with the help of asymptotic
theory when corresponding approximations were used. The
method described makes it possible to split the experimen-
tally determinable concentration curve of the mean activity
coefficients to the required power in individual factor
functions of complementary ion species, gCðmÞ and
gAðmÞ. The results are verified by comparing them with
experimentally determined quotients of single-ion activity
coefficients of ternary systems. The calculated individual
parts for single-ion species are plausible and show a

characteristic, typical concentration curve for cations as
well as for anions. They correlate with the ion parameters.

Keywords Aqueous strong electrolytes . Activity
coefficients concentration dependence . Factorization of the
mean activity coefficients . Single ion activity coefficients

Introduction

In 1924, Sørensen [1] sparked interest in the individual
activity of the single-ion species of dissolved electrolytes in
accordance with the following definition of the pH value:

pH � �logaHþ

aHþ . . . individual activity of the hydrogen ions in the

measured solution

ð1Þ

Guggenheim [2], however, demonstrated as early as 1929
that only the mean activity a± of an electrolyte in solution
can be defined thermodynamically by means of its chemical
potential μ. The conception of splitting the electrochemical
potential emið Þ of an ion of type i into the sum of a chemical
term μi and an electrical term "

»
iy ("

»
i : charge; y:

electrostatic potential) has no physical significance [2].
Therefore, the basis of the thermodynamic definition is
missing for the single-ion activity ai. It continues to be the
subject of controversial discussion in electrochemistry as to
whether the individual activity of a single-ion species has a
real significance alone or not. Single ion activities ai and
individual activity coefficients γi of a single-ion species i do
not apply in classical thermodynamics.

It must nonetheless be accepted that the mean activity
coefficient to the required power of an aqueous strong
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electrolyte is purely mathematical and is the product of
individual activity coefficients of the complementary ion
species (2):

gnþþn�
� ¼ gnþC � gn�A ð2aÞ

g� ¼nþþn�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnþC � gn�A

q
ð2bÞ

ν+,
ν−:

Stoichiometric numbers of cation and anion from
one molecule CnþAn�

These single-ion activity coefficients γC and γA cannot
be determined separately by experiments. The only factor
that is experimentally accessible is the product of the
individual activity coefficients of the cations γC and anions
γA of an electrolyte CnþAn� in the solution, a parameter
known as the mean activity coefficient γ±.

Conventions are required to eliminate the resulting
“breaches” (see also [3–10]). Data, for instance about the
potentials of single electrodes, liquid-junction potentials,
and pH values, are available with the help of conventions. It
must be realized that the use of these conventions are also
regarded as quite conventional [11]. The pH (1) defined by
Sørensen cannot be measured in principle; instead, the
determination of a “conventional pH value” has become
accepted [12]. In many cases, the users are oblivious to the
fact that this “conventional pH value” allows no conclu-
sions to be drawn about the “true acidity” of the measured
solution [13, 14].

In contrast to Taylor [15], Guggenheim attempts to show
in his milestone article [2] that the knowledge of individual
activities of single-ion species is essentially unnecessary in
the thermodynamic treatment of electrolyte solutions. It is
questionable whether or not the significance of the
individual efficacies of single-ion species can be neglected
entirely in light of modern electrolyte research.

It is assumed in non-equilibrium thermodynamics that
the relations for equilibriums of classical thermodynamics
remain valid when irreversible processes are treated too.
The time dependence additionally is integrated in the
considerations. Mathematical treatment generally yields
differential equations. The dilemma is that the rigorous
integration of differential equations for irreversible process-
es in which dissolved electrolytes are involved often
requires knowledge of the individual activities of single-
ion species [11, 14–19].

It is known that a one-to-one breakdown of the product
(2) into factors is impossible without making additional
assumptions. However, the curve of the product of the

individual activity coefficients of the single-ion species
ðgnþC � gn�A Þversus concentration can be determined experi-
mentally. This additional information renders it possible to
split the mean activity coefficients to the required power
(2a) into individual factor functions for cations and anions.
This is accomplished by using basic parametric approaches
in relation to their approximation to the experimentally
determinable concentration curve of the mean activity
coefficients to the required power.

The individual parts that are obtained for cations and
anions by mathematically splitting the mean activity coef-
ficients are characterized by an overbar (gC and gA) to
differentiate it from the thermodynamically undefined single-
ion activity coefficients for cations and anions (γC and γA).

It is not possible to verify the calculated values (gC and
gA) as individual activity coefficients in a direct experi-
mental way. The existence of a thermodynamic state
variable fails as a precondition. Its measurable change with
the concentration of the electrolyte in the solution alone
shows the clear function of the activity of the single-ion
species. The quotients of single-ion activity coefficients in
especially composed electrolyte mixtures, by contrast, can
be experimentally determined by implication [14, 20, 21].

The ratio of the individual activities of two ion species
with the same charge is also defined thermodynamically.
Guggenheim states explicitly: “Thus, in particular, the
‘mean activity coefficient’ of a salt is defined, as is also
the ratio of the activities or activity coefficients of two ionic
species with the same charge” [2]. This is a criterion to prove
whether the purely mathematical method of factorizing mean
activity coefficients into individual parts for cations and
anions as is described in the present publication produces
meaningful results.

The concentration function

The square of the mean activity coefficients of a uni-
univalent electrolyte CA as a function of the concentration
up to high concentrations m can be approximated well
using the product function (3).

g2�ðmÞ ¼ gCðmÞ � gAðmÞ

¼ c1e
c7�m

1
2 þ c3e

c9�m þ c5e
c11�m

3
2 þ :::

� �

� c2e
c8�m

1
2 þ c4e

c10�m þ c6e
c12�m

3
2 þ :::

� �
ð3Þ
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The following Eq. (4) is valid for polyvalent electrolytes
CnþAn� :

gnþþn�
� ðJÞ ¼ gnþC ðJÞ � gn�A ðJÞ

¼ c1e
c07�J

1
2 þ c3e

c9�J þ c5e
c11�J

3
2 þ :::

� �nþ

c2e
c08�J

1
2 þ c4e

c10�J þ c6e
c12�J

3
2 þ :::

� �n�
ð4Þ

m Stoichiometric concentration of the uni-
univalent electrolyte (mole per kilogram)

J Ionic strength (mole per kilogram) in the
commonly used definition as the half sum
of the concentration of all ions multiplied by
the square of their charge numbers [22, 23]

c1;…; c12;…; cp Parameters

The product functions (3) and (4), respectively, fulfill all
known properties for activity coefficients although they
seem unusual. The basic product functions (3) and (4),
respectively, result from the mathematical simulation of the
concentration curve for gnþþn�

� and were not deduced from
the calculation of the excess Gibbs energy with the help of
statistical mechanics. The basis for the structure of the
product functions has been presented in previous publica-
tions [14, 20, 26].

Normally, the mean activity coefficient as a function of
concentration is approximated as a virial equation as
follows (see, e.g., [27]):

ln g�ðmÞ ¼ �A0 ffiffiffiffi
m

p þ Cmþ Dm
3
2 þ . . . ð5Þ

A′ Debye–Hückel constant
C, D, … Empirical virial coefficients

so the square of the mean activity coefficients of uni-
univalent electrolytes is given by:

g2�ðmÞ ¼ gCðmÞ � gAðmÞ ¼ e�2A0 ffiffiffi
m

p

�eðCCþCAÞm � eðDCþDAÞm
3
2 � . . .

CC;DC; . . . are valid for the cation;
CA;DA; . . . are valid for the anion

� �
ð6Þ

The adaptation of ln γ± to concentration m results from
the treatment of the inter-ionic interaction using the
statistical mechanics to calculate the excess chemical
potential μexc of an electrolyte in solution. It is proportional
to the logarithm of the mean activity coefficient (see, e.g.,
[28]):

mexc ¼ R � T � ln g� ð7Þ

R Gas constant
T Thermodynamic temperature
μexc Excess chemical potential

An attempt to factorize the basic approach (6) yields
infinite solutions. However, the mathematical structure
of (3) and (6) is basically different. The product
function (3) [and (4) too] can be clearly split in
principle into its two factor functions. Nonetheless, the
similarity of both Eqs. (3) and (6) is evident after their
series expansions.1

To obtain the desired individual parts gC and gA for
cations and anions, the product functions (3) and (4),
respectively, for the mean activity coefficients to their
required power gnþþn�

� ðJÞ� �
were split into factor func-

tions of predefined structure. Assuming the existence of a
clear solution, estimating a product function yields the
factorization of the product. The preconditions for apply-
ing this concept are (1) the correctness for the structure of
the product functions (3) and (4), respectively, as well as
(2) the verifiability that the factor functions of product
functions (3) and (4), respectively, yield plausible values
for the complementary ion species. These two prerequi-
sites have been presented in previous publications [14, 20,
24–26].

The factor functions are the sum of several terms. Both
factor functions have an identical structure. The values of
the parameters in the factor functions are the only factors
responsible for the gradually different concentration curves
of the cations and anions resulting from the optimal
approximation of product functions (3) and (4), respective-
ly, to the existing experimental data for the concentration
curve of the mean activity coefficients to the required
power gnþþn�

� ðJÞ� �
.

1 Thus, direct equations can be established between the empirical
virial coefficients of (6) and the parameters of (3), e.g., the application
of the product function (20) with a definite number of parameters
produces such relations.
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Solution of a nonlinear regression problem

Parameters c1,…,cp of product function (3) have to be
determined based on n observations (mi; gi), whereas gi is
the measured square of mean activity coefficients γ±

2(mi)
for concentration mi.

In the case of n>p, which is of practical importance,
parameters c1,…,cp are determined by fitting the “best”
model (3) to the given observations. The least squares
method is an objective and efficient method for determining
such a best fitting model [30, 31]. The validity of (3) is
assumed on the one hand and, on the other hand, an additive
random error εi of the measurements gi of the product of the
individual parts of complementary ion species:

gi ¼ g2�ðmiÞ ¼ gC mið Þ � gA mið Þ þ "i

¼ c1e
c7�m

1
2
i þ c3e

c9�mi þ c5e
c11�m

3
2
i þ :::

� �

c2e
c8�m

1
2
i þ c4e

c10�mi þ c6e
c12�m

3
2
i þ :::

� �
þ"i; i ¼ 1; . . . ; n

ð8Þ

The individual deviations of observations gi from the
fitted values gC mið Þ � gA mið Þ are called residuals. Parame-
ters c1,…,cp are determined in such a way that the sum Q of
squared residuals (the overall discrepancy) is minimal [29,
31, 32]:

Q ¼
Xn
i¼1

"2i ¼
Xn
i¼1

gi � gC mið Þ � gA mið Þ½ �2; ð9Þ

there is no closed form solution of the optimization problem
(9). Conditions required for optimization to the desired
parameters lead to a nonlinear system of equations.

Iterative methods are generally applied in solving
nonlinear system of equations [29, 32]. The system of
equations of the Gauss–Newton iterative procedure to be
solved in each step can have a nearly singular coefficient
matrix; in other words, it is ill-conditioned.

The permitted functions of the regression approach
generate a highly flexible array of p parameter curves.

Suitable robust algorithms can solve ill-conditioned
problems with actually unsuitable initial values and allow

the estimation of parameters. Such a method is, e.g., the
Levenberg–Marquardt algorithm [29, 32]. So, at least local
minima of function (9) might be found by minimizing the
overall discrepancy, and the parameters are estimated
simultaneously. The Levenberg–Marquardt algorithm was
used preferably for the optimization problems in the present
work.

Restriction of the number of summands
within the factor functions of the basic
product approaches

Consideration of only the first summand

If only the first summand is considered, the following
equations are valid:

g2�ðmÞ ¼ gCðmÞ � gAðmÞ � c1e
c7�m

1
2

� �
c2e

c8�m
1
2

� �
ð10Þ

for polyvalent electrolytes CnþAn� , respectively,

gnþþn�
� ðJÞ ¼ gnþC ðJÞ � gn�A ðJÞ � c1e

c07�J
1
2

� �nþ
c2e

c08�J
1
2

� �n�
ð11Þ

In this case, the validation of the basic approaches is
reduced to the concentration of electrolytes nearly at zero.
In the present publication, it is shown that these basic
approaches containing only the first summand in the factor
functions merge into the Debye–Hückel limiting law
equation [33, 34] when the known limiting infinite dilution
conditions are taken into consideration.

Two preconditions have to be fulfilled:
At infinite dilution, all activity coefficients will have a

value of one. If m=0, then it follows

g�ð0Þ ¼ gCð0Þ ¼ gAð0Þ ¼ 1 ð12Þ

and c1=c2=1. As the concentration approaches zero, the
individual properties of the ions lose their influence on the
activity coefficient, and it follows the same functional
dependency between the activity coefficient and the
concentration for all ion species with the same charge
number. Debye and Hückel [33, 34] described a limiting
law. This Debye–Hückel limiting law equation has the
following form for univalent ions:

ln gDHðmÞ ¼ �A0 ffiffiffiffi
m

p
: gDH . . . activity coefficients in the Debye� H

:
u
:
ckel range ð0 	 m < 0:01mol=kgÞ ð13Þ
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Accordingly, the derivative of functions gC and gA with
respect to m near zero is stated by the Debye–Hückel
limiting law equation.

Since by equalization of the limits of the first derivatives
for the border crossing m ↓ 0:

lim
m!0

@gDH
@m

¼ lim
m!0

@gC
@m

¼ lim
m!0

@gA
@m

ð14Þ

it follows:

lim
m!0

� A0 � e�A0 ffiffiffi
m

p

2 � ffiffiffiffi
m

p ¼ lim
m!0

c7 � ec7
ffiffiffi
m

p

2
ffiffiffiffi
m

p ¼ lim
m!0

c8 � ec8
ffiffiffi
m

p

2
ffiffiffiffi
m

p ; ð15Þ

and hence follows c7=c8=−A′ and:

g2�ðmÞ ¼ gCðmÞ � gAðmÞ � e�A0 �m1
2

� �
e�A0 �m1

2

� �
ð16Þ

or for the general case:

gnþþn�
� ðJÞ ¼ gnþC ðJÞ � gn�A ðJÞ � e�z2C�A0 �J 1

2

� �nþ
e�z2A�A0 �J 1

2

� �n�
ð17Þ

zC,
zA

Charge numbers of cation and anion in the
molecule CnþAn�

Relationships (16) and (17) are just the Debye–Hückel
limiting law equations.

Consideration of the first two summands

If the first two summands are taken into consideration, the
following equations are valid:

g2�ðmÞ ¼ gCðmÞ � gAðmÞ � c1e
c7�m

1
2 þ c3e

c9�m
� �

c2e
c8�m

1
2 þ c4e

c10�m
� �

ð18Þ
and for polyvalent electrolytes CnþAn� , respectively:

gnþþn�
� ðJÞ ¼ gnþC ðJÞ � gn�A ðJÞ

� c1e
c07�J

1
2 þ c3e

c9�J
� �nþ

c2e
c08�J

1
2 þ c4e

c10�J
� �n�

ð19Þ
With these approaches, a description of the mean activity
coefficient will succeed very well for an extended range of
concentration. This second partial adjustment range of
concentration ranges from m=0 up to a maximum of
7 mol/kg generally, but the upper limit of the concentration
is different for several electrolytes.

Note that the estimated parameters of the product
function, which were already included for the smaller
concentration range, change when an additional summand
is included in both factor functions, because the system of
functions is not orthogonal.

The limiting infinite dilution condition as follows from (12)
is c1 þ c3 ¼ 1, respectively, c3 ¼ 1� c1ð Þ, and c2 þ c4 ¼ 1,
respectively c4 ¼ 1� c2ð Þ.

The limiting infinite dilution condition (14) results in
c1 c7 = −A′ respectively c7 ¼ � A0

c1
and c2.c8 = −A′

respectively c8 ¼ � A0
c2
[20, 26].

The product function containing two summands in the
factor functions for uni-univalent electrolytes has the
following form with new denotations for the parameters
[14, 20, 24–26]:

g2�ðmÞ ¼ gCðmÞ � gAðmÞ

� b1e
�A0

b1
�m1

2 þ ð1� b1Þeb3�m
� �

� b2e
�A0

b2
�m1

2 þ ð1� b2Þeb4�m
� �

; ð20Þ

and for polyvalent electrolytes CnþAn� as follows:

gnþþn�
� ðJÞ ¼ gnþC ðJÞ � gn�A ðJÞ

� b1e
�z2C �A

0
b1
�J 1

2 þ ð1� b1Þeb3�J
� �nþ

� b2e
�z2A�A

0
b2
�J 1

2 þ ð1� b2Þeb4�J
� �n�

ð21Þ

Because for all m≥0, the native conditions

gCðmÞ > 0; ð22Þ

gAðmÞ > 0 ð23Þ
have to be valid, the boundary conditions follow:

0 < b1 < 1 ð24Þ
and

0 < b2 < 1; ð25Þ
Thus, gC, respectively, gA in the basic approach (20) prove

to be convex linear combinations of the functions e�
A0 ffiffimp
b1

and eb3m, respectively, e�
A0 ffiffimp
b2 and eb4m. Of course, the

analog conditions are valid for (21).
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Consideration of more than two summands

Considering the large concentration ranges, the achievable
approximation becomes clearly worse with the four
parametric basic product approaches (20) and (21), respec-
tively. The problems are that (1) the upper limit of the
concentration, for which measured values can be used for
the optimization process, is unknown without the adapta-
tion getting markedly worse and (2) this boundary changes
for different electrolytes. The “stochastic” distribution of
the residuals (pure error) can be used as a decision criterion.
The “stochastic” distribution of the residuals disappears in
case of additional experimental data for higher concen-
trations are included in the optimization process. In
addition, a structure of the residuals becomes more and
more evident and this reflects a functional dependency of
the residuals on the concentration (lack of fit error; see
Figs. 1 and 2)

This phenomenon can be interpreted to the effect that the
basic approaches (20) and (21), respectively, are not
adequately suitable. However, the first three summands in
the factor functions of the basic product approaches (3) and
(4), respectively, are enough to record the concentration
curve of the mean activity coefficient to the required power
from zero up to the highest concentration. However, the
large number of 12 parameters c1,…,c12 cause difficulties
during optimization. Using the limiting infinite dilution
conditions (12) and (14) is a possible way to reduce the
number of parameters. Thus, a basic approach with only
eight parameters is obtained. With a new denotation for the
parameters of the first three summands in the factor
functions of the basic product approach (4), the product

function for the general case of strong electrolytes CnþAn�
is formed to (26):

gnþþn�
� ðJ Þ ¼ gnþC ðJ Þ � gn�A ðJ Þ

� d1e
�z2C

A0
d1
�J 1

2 þ ð1� d1Þed3�J þ d5ðed7�J
3
2 � ed3�J Þ

� �nþ

� d2e
�z2A

A0
d2
�J 1

2 þ ð1� d2Þed4�J þ d6ðed8�J
3
2 � ed4�J Þ

� �n�
ð26Þ

It is not meaningful to consider more than three summands
in the factor functions.

Due to the native conditions (22) and (23), and the
consideration of conclusions from the Debye–Hückel
theory, which in the right-hand neighborhood of zero
demands, the following inequalities are valid:

gCðJÞ < 1 ð27Þ
and

gAðJÞ < 1 ð28Þ
and because the terms eJ ; eJ

3
2 as well as the fact that the

exponential functions of the higher power of J (respectively,
m) at the transition J ↓ 0 tend faster to 1 than e�

ffiffi
J

p
, the

values of parameters d1 and d2 in (26) are limited between 0
and 1.

Choice of a limited concentration range

Using the four-parametric basic product approaches (20) and
(21), respectively, only the approximation to parts of the
experimental concentration curve is optimal. Selecting a

Fig. 1 Residuals for g2�NaIðmÞ, approximation is carried out by using
the basic product approach (20), concentration range m≤3.5 mol/kg
(mean activity coefficients, see [35])

Fig. 2 Residuals for g2�NaIðmÞ, approximation is carried out by using
the basic product approach (20), concentration range m≤10 mol/kg,
(mean activity coefficients, see [35])
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limited part of the entire slope of the experimental curve as a
basis for an adaptation will imply inaccurate results because
the product function beyond the limited part resulting from the
estimation will continue to be unpredictable. This phenome-
non, exemplified for g2�NaOH is displayed in Fig. 3. The
residuals between the experimentally determined concentra-
tion curve and the slope of the calculated curves can be seen
in Fig. 3. While adapting the limited part from concentration
zero to point m=3 mol/kg of the experimental curve, for
example, the determined product function, despite a good
adaptation of the selected part, can deviate from the
experimental curve.

The trend of the deviation is not always the same. This is
visible in Fig. 3 from the residuals between the courses of
the experimentally determined concentration curve and the
calculated curve adapting the limited part from zero to point
m=6 mol/kg.

The narrower selected the range of the concentration, the
less stable the estimated parameters will be. This implicates
incorrect factor functions. An attempt will therefore be made
to maximize the concentration range for the approximation to
estimate the parameters.

Test calculations have shown that the approximation to
the “S”-shaped curve (see, e.g., [36]) is successful by using
the product function (26) with three summands in each of
the factor functions. Note that the concentration range starts
at zero. The product function contains eight parameters.

The use of higher parametric basic product approaches is
generally unnecessary. The advantage gained by improved
approximation is canceled out due to the problematic
determination of the higher number of parameters as a result
of the higher flexibility. The stability of the estimation of
parameters decreases as the number of parameters increases.
The parameters of the first summands are those least
influenced.

The minimum sum of least squares and stochastic
distribution of the residuals depending on m are the criteria
for good approximation. A recognizable structure of the
residues must not develop (see Figs. 1 and 2).

Mathematically correct solutions and physicochemically
reasonable results

The flexibility of the basic product approaches rises with an
increasing number of the considerable summands in (3) and
(4), respectively. But the condition of the coefficient matrix
is clearly impaired. In addition, the number of (local)
minima of overall discrepancy (9) increases [37].

If an ill condition exists, the Gauss–Newton iterative
method with arbitrary initial values traces a curve which is a
good approximation to the collection of data. However, a lot
of likewise well-approximated curves with other parameters
can exist. A small change in one parameter in the approach
can result in a large change in the other parameters [38]. This
situation can be improved by using an extended number of
measuring data with extreme accuracy. Admittedly, different
minima with dependency of the initial values may possibly
still result from the iteration. The solution of the optimization
problem is therefore ambiguous.

With respect to optimization problem (9), all possible
solutions are correct. This considerable nonlinear regression
approach is not yet a basic approach without relevant
background, but the nonlinear regression model describes
real physicochemical facts which include concrete precondi-
tions for the nonlinear regression approach and predetermines
restrictions to the selection of practicable solutions. Only one
result should be expedient from the mathematically possible
solutions. In mathematics, no criterion exists to allow the
choice of the physicochemically correct result from all
mathematically practicable results. Such a decision must
always be selected from the real background.

In the case of the single-ion activity coefficients,
physicochemical knowledge is limited and mainly restricted
to the concentration nearly at zero. Hence, important
conclusions arise to appraise the results. Estimations, which
result in a negative individual activity coefficient, are
excluded a priori due to physicochemical futility. Further-
more, results have to be dismissed which do not show the
requested negative slope of the single-ion activity coef-

Fig. 3 Residuals εi corresponding to approximations using different
concentration data ranges (for NaOH) on the basis of the basic product
approach (20), (mean activity coefficients, see [35])
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ficients in the concentration range nearly at zero from the
Debye–Hückel theory. The calculated single-ion activity
coefficients of strong uni-univalent and uni-bivalent elec-
trolytes may not be lower than the Debye–Hückel limiting
law requests.2 In such physicochemically absurd solutions,
the parameters d1 and d2, respectively, of the basic product
approach (26) generally have values whose magnitude lies
outside of the interval [0; 1]. In these cases, optimization
has to be repeated with other initial values. However, a
criterion fails for a certain specification of initial values.
Another possibility is to perform the optimization under
corresponding constraints. But this approach cannot work
because such corresponding constraints are unknown.
Although solutions can be excluded due to physicochemical
futility, the information about individual activity coeffi-
cients of single-ion species does not suffice to determine
the adequate physicochemical result.

It is necessary to develop and adopt a method to solve
this nonlinear regression problem. The aim is to limit the
result to the physicochemically practicable solution right
from the outset. This aim can be reached by using the
corresponding approximations. These contain known phys-
icochemical constraints resulting from the Debye–Hückel
theory.

Splitting of mean activity coefficients into individual
parts for complementary ion species
by using the asymptotic theory

An asymptotic theory was developed by Ferse [20, 25] and
Ferse and Neumann [26] in the 1970s to estimate the
parameters b1,…,b4 of the four-parametric basic product
approaches (20) and (21), respectively. Clear and stable
results can be attained with this method [14]. Using the
asymptotic theory, the parameters b1,…,b4 were determined
successively using the corresponding approximations which
are derived from basic product approaches (20) and (21),
respectively, for low and also high concentrations [14, 20,
25, 26].

The following relation can be applied form or J≥5 mol/kg,
respectively:

b1e
�z2C

A0
b1

ffiffi
J

p
� b2e

�z2A
A0
b2

ffiffi
J

p
� 0: ð29Þ

Thus by using the corresponding approximations (30)
and (31) in the general case of high concentrations:

gnþþn�
� ðJÞ � 1� b1ð Þnþ 1� b2ð Þn� � e nþb3þn�b4ð Þ�J ð30Þ

respectively

ln gnþþn�
� ðJÞ � ln ð1� b1Þnþð1� b2Þn�½ � þ ðnþb3 þ ν�b4ÞJ :

ð31Þ
xIn the concentration range of m and J, respectively,

between 5 and 10 mol/kg, ln γ± for a strong electrolyte
generally is a linear function of m respectively J; therefore,
in the first step, the sum (ν+b3 + ν−b4) as well as the
product 1� b1ð Þnþ 1� b2ð Þn�½ � are determined with the
linear regression analysis as the standard mathematical
method by using the corresponding approximation (31). In
Fig. 4, the determination of the ordinate intercept β:

b ¼ ln ð1� b1Þnþð1� b2Þn�½ � ð32Þ

and the determination of the slope (ν+b3 + ν−b4) are
depicted by way of example for NaClO4 solutions. The
values are β1=−1.3142777 and for the slope ðb3 þ b4Þ ¼
0:0891 The γ± values of NaClO4 solutions were taken from
the papers by Hamer and Wu [35], Jones [42], and Rush
and Johnson [43].

Parameters b1 as well as b2 can then be determined
separately by applying an additional corresponding approxi-

2 This condition is not fulfilled by dilute solutions of high charge
electrolytes, 2:2, 2:3, and 3:3, where negative deviations from Debye–
Hückel limiting law occur. This occurrence does not signify that these
are weak electrolytes. It is possible to prove that this effect is regularly
predicted on the mere basis of the electrostatic interaction between the
ions and the ion cloud [39, 40].

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10

m [mol/kg]

ln
 γ

±2

1
2
3

Fig. 4 Determination of the ordinate intercepts and the slopes from
the concentration curves of ln g2�ðmÞ vs. mNaClO4 for 0.01m NaCl (=1)
and 0.01m HCl (=2), respectively, each with a great surplus of NaClO4

and for pure NaClO4 solutions (=3)
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mation for very low m respectively J, e.g., J=10−3 mol/kg
(then eb3J � eb4J � 1 is valid):

gnþþn−
� ð0:001Þ ¼ gnþC ð0:001Þ � gn−C ð0:001Þ

� b1 � e�z2C
A0
b1

ffiffiffiffiffiffiffi
10−3

p
þ 1� b1ð Þ

� �nþ

� b2 � e�z2A
A0
b2

ffiffiffiffiffiffiffi
10−3

p
þ 1� b2ð Þ

� �n−

ð33Þ

The Debye–Hückel relation (13) derived from theoretical
thoughts [8, 9] works well for the calculation of the mean
activity coefficients during validation of the known pre-
conditions. Using the extended Debye–Hückel (Eq. 34):

ln gnþþn�
� ¼ �ðnþ þ n�Þ zC � zAj jA0 ffiffi

J
p

1þ B � a � ffiffiffi
J

p

a ¼ empiricalð Þion parameter½A�
ð34Þ

the mean activity coefficients are calculated in the concen-
tration range [22] 0<m, J≤5 ∙10−2 mol/kg.3,4

Concerning the NaClO4 example, the value of g2�ð0:001Þ
was calculated to be 0.9312285 using the extended Debye–
Hückel (Eq. 34). With this value in Eq. (33) and using the
ordinate intercept for NaClO4, the values b1 and b2 are
calculated to be 0.2123 and 0.6589 [20, 26] (see Fig. 5).

Finally, the sum (ν+b3 + ν−b4) gets separated with
measured values in the area of the strongest curvature of the
gnþþn�
� � m curve with the help of the Fibonacci search

technique [44].
The values b3=0.1215 and b4=−0.0324 result for

NaClO4 solutions. For additional details, see [20, 26]. This
method proved to be successful [14, 20, 24–26].

With these values, the individual parts for the single-ion
species of NaClO4 solutions are calculated using (20) from
(see footnote 3):

g1ðmÞ ¼ 0:2123 e�
1:1711

ffiffi
m

p
0:2123

þ 0:7877 e0:1215 m ½¼ gNaþðmÞ� ð36aÞ

g2ðmÞ ¼ 0:6589 e�
1:1711

ffiffi
m

p
0:6589

þ 0:3411 e�0:0324 m ½¼ gClO�
4
ðmÞ� ð36bÞ

The allocation of factor functions (36a) and (36b) to the
cation Na+ or anion ClO4

− cannot be determined on a purely
mathematical basis. This decision is clearly possible, however,
with the help of especially composed electrolyte mixtures (see
"On the allocation of the factor functions to the cation or
anion" section).

In Fig. 6, the calculated individual functions for the single-
ion species ln g1ðmÞ ¼ 36að Þ and ln g2ðmÞ ¼ 36bð Þ versus m1

2

for NaClO4 by factorization of g2�NaClO4
(m) are plotted

together with the mean activity coefficient for NaClO4

g�NaClO4
¼ G

	 

and the Debye–Hückel limiting law equa-

tion (=DH) in the range of concentration 0 ≤ m
1
2≤1 mol/kg.

Figure 7 shows the calculated values as a function of m up to
concentration m=5 mol/kg for NaClO4, together with the
calculated values for especially composed electrolyte
mixtures, see "On the allocation of the factor functions
to the cation or anion" section.

This method of asymptotic theory only needs the knowledge
of the mean activity coefficients for the concentration range m
or J>5 mol/kg, respectively, in the case of the corresponding
approximation (31). Unfortunately, they are not known for all
electrolytes.

Fig. 5 Graphical separation of b1 and b2 with the functions z1

and z ′2 z1 : b1e
�A0

b1

ffiffiffiffiffiffiffiffi
0:001

p
þ ð1� b1Þ

h i
b2e

�A0
b2

ffiffiffiffiffiffiffiffi
0:001

p
þ ð1� b2Þ

h i
¼

g2�ð0:001Þ; z02 : ð1� b1Þð1� b2Þ ¼ eb1 . The equations are valid for

NaClO4 with g2�ð0:001Þ ¼ 0:931228 and eb1 ¼ 0:268668

4 Hamer and Wu [35], for example, used the follow relation (35) for
the calculation of the mean activity coefficients, but for an extended
concentration range:

log g� ¼ �A zC � zAj j ffiffiffi
J

p

1þ B»
ffiffiffi
J

p þ b � J þ C � J 2 þ D � J 3 þ ::: >< ð35Þ

B*, ß, C, D…: empirical constants, the values are different for all
electrolytes.

Note, B* in (35) is not identical with “B a” in the extended
Debye–Hückel Eq. (34)!
5 Extremely high accuracy is certainly not really important. They
afford excellent services as operands.

3 The following values are used after the year 1977 [41]: A′=1.17625
(A=0.510839), B=0.32866, previously it were used these values:
A′=1.1711 and B=0.3281; all values are valid for aqueous solutions
and temperature 298.15 K.
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Using the asymptotic theory, the individual parts for
single-ion species were calculated for the following electro-
lytes. These have already been published and discussed
elsewhere so that a repeated description of these values and
diagrams is unnecessary: alkali chlorides [14, 20], alkali
bromides [24], sodium perchlorate [20, 26], alkaline earth
chlorides [14, 25], alkaline earth bromides [25], magnesium
iodide [25], alkaline earth perchlorates [14, 25], uranyl
perchlorate [14, 25], alkali hydroxides [14, 24], hydrohalic
acids [14, 24], perchloric acid [14, 24], and furthermore for

the mixed electrolyte solutions 0.01m HCl in NaClO4

solutions [20, 26], 0.01m NaCl in NaClO4 solutions [20,
26], 0.01m NaOH in NaClO4 solutions [20, 26], 0.01m HCl
in KCl solutions [14], and 0.01m HCl in SrCl2 solutions
[25]. The values are valid for the concentration range (ionic
strength) from zero up to 5 mol/kg [14].

On the allocation of the factor functions to the cation
or anion

Electrolyte solutions containing a great surplus of neutral
salt additionally

The allocation of the factor functions to the cation or anion
is possible in the case of the polyvalent electrolytes from
the results of calculation if the exponents (ν+; ν−) of the
factor functions of the basic product approach (21) have
different values. With equal exponents and thus for all uni-
univalent electrolytes too, it is not possible to decide on a
purely mathematical basis which of the two obtained factor
functions of the basic product approach (20) describes the
concentration curve of the activity coefficients of the cation
or anion. The factor functions can be allocated clearly to
either the cation or the anion [14] with the help of specially
mixed electrolyte solutions.

Mixed electrolyte solutions (such solutions contain a
strong electrolyte κα as well as a great surplus of neutral
salt) are suitable for taking a decision if the general
condition mκα<<mneutral salt is valid. Besides mean activity
coefficients, the ratio of single-ion activity coefficients in
these especially mixed electrolyte solutions can also be
determined by implication [14]. In electrolyte mixtures with
this special composition, the interionic interaction between
the ions of the diluted electrolyte κα one with another is
negligibly small compared to the interactions with the ions of
the neutral salt which are in great surplus in the electrolyte
mixture [14, 20, 45]. Hence, diluted electrolytes (e.g., NaCl
and HCl or HCl and HBr), each with a great surplus of the
neutral salt NaClO4 of the same concentration, have the same
individual activity coefficient in consideration of the com-
mon ion species [14, 20, 21, 45]: gCl�ðNaCl in NaClO4Þ ¼
gCl�ðHCl in NaClO4Þ or gHþðHCl in NaClO4Þ ¼ gHþðHBr in NaClO4Þ.
The single-ion activity coefficient of the Na+ ions of the
dilute electrolyte NaCl in the mixed electrolyte solution
containing a great surplus of NaClO4 equals the single-ion
activity coefficient of the Na+ ions in the pure NaClO4

solution of the same concentration: gNaþðNaCl in NaClO4Þ ¼
gNaþðpure NaClO4Þ [14, 20, 45]. The absolute values are still
unknown. The mean activity coefficients of the diluted
electrolytes κα (NaCl and HCl or HCl and HBr, each
in solutions containing a great surplus of NaClO4 of the same
concentration) are certainly different as a result of the different
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magnitude of the individual activity coefficients of the
counter ions [14, 21, 45], for instance: gNaþðNaCl in NaClO4Þ 6¼
gHþðHCl in NaClO4Þ and gCl�ðHCl in NaClO4Þ 6¼ gBr�ðHBr in NaClO4Þ.
The mean activity coefficient of a fourth electrolyte can be
calculated from the mean activity coefficients of three other
electrolytes [14], e.g., g2�HCl � g2�NaBr=g

2
�NaCl ¼ g2�HBr in the

case of diluted electrolytes (each with a great surplus of the
neutral salt NaClO4 of the same concentration). Of course, in
this way the quotients of single-ion activity coefficients are
known in these mixed electrolyte solutions by implication [14,
21], e.g.: gHþ=gNaþ and gBr�=gCl� . This was verified by
factorizing the mean activity coefficients of the diluted
electrolyte g2�ka (by mκα=0.01=const.) as a function of the
neutral salt concentration by estimating the parameters of the
basic approach (20) using the asymptotic theory like the one
shown previously [14, 20, 24, 25]. The theoretically required
agreement is also confirmed by a comparison with the
calculated individual activity coefficients of the ions of the
pure neutral salt (see also "Splitting of mean activity
coefficients into individual parts for complementary ion
species by using the asymptotic theory" section).

Diluted NaCl solution and diluted HCl solution:
each of these solutions with a great surplus of NaClO4

The squares of the mean activity coefficients of diluted NaCl
and diluted HCl, respectively, each with a great surplus of the
neutral salt NaClO4, were split as a function of the NaClO4

concentration using the asymptotic theory. The concentration
of the diluted electrolytes NaCl and HCl in the electrolyte
mixtures was held constant at 0.01 mol/kg; the concentration
of the neutral salt NaClO4 was varied in 0.3 ≤ mNaClO4≤10
mol/kg. The mean activity coefficients of 0.01m NaCl as a
function of the concentration of the neutral salt NaClO4 were
determined accurately thermodynamically by using e. m. f.
measurements with the galvanic cell without transport (P).
These results have already been published [20, 45]:

Hg=Hg2Cl2ðsÞ;NaClð0:01mÞ;NaClO4ð0:3�10mÞ=

Na Hgð Þ=NaClð1:0mÞ;Hg2Cl2ðsÞ=Hg

ðPÞ

The mean activity coefficients of 0.01m HCl as a function
of the concentration of the neutral salt NaClO4 were
determined accurately thermodynamically by using e. m. f.
measurements with the galvanic cell without transport (Q).
These results have already been published as well [20, 45]:

Ptð ÞH2=HClð0:01mÞ;NaClO4 0:3�10mð Þ;Hg2Cl2ðsÞ=Hg ðQÞ
The functions for determining the ordinate intercept and the

slope of ln g2� vs. mNaClO4are also depicted in Fig. 4 for both
of these mixed electrolyte systems. The ordinate intercept of
ln g2�NaCl vs. mNaClO4 is b2 ¼ ln 1� b1ðPÞ

	 
ð1� b2ðPÞÞ
� � ¼

�1:1500154, a n d f o r ln g2�HCl v s . mNaClO4 i t i s
b3 ¼ ln 1� b1ðQÞ

	 
ð1� b2ðQÞÞ
� � ¼ � 1:0696678.

For the sole determination of b1(P) and b2(P) (valid for the
system NaCl/NaClO4), respectively, of b1(Q) and b2(Q) (valid
for the system HCl/NaClO4), the values for the mean activity
coefficients of NaCl and HCl, respectively, are required in
the electrolyte mixture with NaClO4 at a concentration of
mNaClO4 ¼ 0:001mol=kg. These values have only hypothet-
ical character because it is difficult to prepare a
corresponding electrolyte mixture with the required precon-
dition mNaClorHCl << mNaClO4 . For additional details, see
reference [20]. The corresponding values are g2�NaCl ¼
0:931312 and g2�HCl ¼ 0:931896 [20]. With these values in
Eq. (33) and by using the corresponding ordinate intercepts,
the values b1(P) and b2(P) (for NaCl in NaClO4 solutions) are
calculated to be 0.2135 and 0.5974, respectively, and the
values b1(Q) and b2(Q) (for HCl in NaClO4 solutions) are
calculated to be 0.1773 and 0.5829, respectively.

From the slope b3ðPÞ þ b4ðPÞ
	 
 ¼ 0:1259 for 0.01m NaCl

in NaClO4 solutions the values b3(P) and b4(P) yield 0.1145
and 0.0114, respect ively, and from the slope
b3ðQÞ þ b4ðQÞ
	 
 ¼ 0:3875 for 0.01m HCl in NaClO4 solutions
the values b3(Q) and b4(Q) result in 0.3823 and 0.0052,
respectively, by using the Fibonacci search technique [44].

The individual parts for the single-ion species of 0.01m
NaCl in NaClO4 solutions are calculated using (20) from
(see footnote 3):

g1ðPÞðmÞ ¼ 0:2135 e�
1:1711

ffiffi
m

p
0:2135 þ 0:7865 e0:1145 m ½¼ gNaþðPÞ ðmÞ�

ð37aÞ

g2ðPÞðmÞ ¼ 0:5974 e�
1:1711

ffiffi
m

p
0:5974 þ 0:4026 e0:0114 m ½¼ gCl�ðPÞ ðmÞ�

ð37bÞ
and the individual parts for the single-ion species of 0.01m
HCl in NaClO4 solutions from:

g1ðQÞðmÞ ¼ 0:1773 e�
1:1711

ffiffi
m

p
0:1773 þ 0:8227 e0:3823 m ½¼ gHþ

ðQÞ
ðmÞ�
ð38aÞ

g2ðQÞðmÞ ¼ 0:5829 e�
1:1711

ffiffi
m

p
0:5829 þ 0:4171 e0:0052 m ½¼ gCl�ðQÞ ðmÞ�

ð38bÞ

The factor functions can be allocated clearly
to either the cation or the anion

The allocation to the cation or anion is not possible either for
themixed electrolyte solutions. Only comparative studies of the
individual functions for the single-ion species in the three
electrolyte systems (1) 0.01m NaCl in NaClO4 solutions, (2)
0.01m HCl in NaClO4 solutions, and (3) pure NaClO4

solutions are able to be allocated to the cation or the anion.
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In Fig. 7, the individual functions for the single-ion
species for NaCl in NaClO4 solutions ln g1ðPÞðmÞ ¼ 37að Þ
and ln g2ðPÞðmÞ ¼ 37bð Þ, and for HCl in NaClO4 solutions
ln g1ðQÞðmÞ ¼ 38að Þ and ln g2ðQÞðmÞ ¼ 38bð Þ are plotted
together with the individual functions for the single-ion
species for pure NaClO4 solutions ln g1ðmÞ ¼ 36að Þ and
ln g2ðmÞ ¼ 36bð Þ. It shows that the individual functions for
ln g2ðPÞðmÞ ¼ 37bð Þ in the electrolyte mixture NaCl/NaClO4

agree with the individual functions for ln g2ðQÞðmÞ ¼ 38bð Þ
in the electrolyte mixture HCl/NaClO4. Thus, these factor
functions are allocated to the Cl− ion in the mixed
electrolyte solutions NaCl/NaClO4 and HCl/NaClO4. Good
agreement is shown by the individual function for
ln g1ðPÞðmÞ ¼ 37að Þ in the electrolyte mixture NaCl/NaClO4

with the individual function for ln g1ðmÞ ¼ 36að Þ in the pure
NaClO4 solutions. These factor functions thus describe the
individual concentration curves for the activity coefficients
of the single-ion species Na+ in a pure NaClO4 solution and
in the electrolyte mixture NaCl/NaClO4. The agreements
that have been found allow the clear allocation of the
obtained factor functions to the cation or anion [20, 26].

The theoretically required agreements in the individual
factor functions are also found by factorizing the mean
activity coefficients of other diluted electrolytes, each with
a great surplus of neutral salt e.g. for the mixtures 0.01m
NaOH in NaClO4 solutions [20, 26], 0.01m HCl in KCl
solutions [14], and 0.01m HCl in SrCl2 solutions [25].

However, it is not necessary to carry out the direct
comparison for every single uni-univalent electrolyte with
corresponding suitable three-component systems to decide on
the allocation of the obtained factor functions to the cation or
anion. A multitude of electrolytes affirm that the calculated
individual activity coefficients of the cations and anions show a
characteristic shape in the concentration curve [14, 24, 25],
which always differs. Thus, a corresponding allocation is
possible by means of analog curve shapes.

For multivalent electrolytes, whose allocation is already
decided from the result of the parameter estimation due to
different large exponents (ν+≠ν−) on the factor functions of the
basic product approach (21), the characteristic difference was
also confirmed between the concentration curves of the
calculated individual activity coefficients of the cations and
anions [14, 25].

Discussion of the approach and parameter
determination

The mathematical approach

The classical approximation (5) or (6), respectively, regarding
the concentration curve of mean activity coefficient cannot be
split clearly into individual functions for the ionic species. An

attempt to factorize it yields infinite solutions. Approaches (3)
and (4), by contrast, have a different mathematical structure
compared to the classical approximation approach. It is
possible, at least in principle, to unequivocally factorize
approaches (3) and (4), respectively.

The structure of mathematical approaches (3) and (4)
considers the infinitely dilute solution as one fixed point. It
is possible to make accurate statements about the individual
activity coefficients only to this point of reference. In
addition, a special concentration range exists indirectly for
those statements about individual activity coefficients. This
is the range 5 ≤ m ≤ 10 mol/kg, where the logarithm of the
mean activity coefficient is linearly dependent on the
concentration (see Fig. 4). The mathematical approach is
based on this concentration range, too. If the sum of two
functions results in a linear function on the concentration, it
is very probable that both single functions have to be
linearly dependent on the concentration as well (see (39),
compare for it (31)):

2 ln g�ðmÞ ¼ Φ � mþ r ¼ ln gCðmÞ þ ln gAðmÞ
¼ fC � mþ rC þ fA � mþ rA ð39Þ

(concerning the concentration range 5≤m≤10 mol/kg) with
Φ, ϕC, ϕA, ρ, ρC, ρA=const. where Φ ¼ fC þ fA ¼ b3 þ b4
and r ¼ rC þ rA ¼ lnð1� b1Þ þ lnð1� b2Þ

There is only one exception to this rule in mathematic. The
differences in the linearity of the two functions are exactly
compensated for in form and size. Such a coincidence for
individual activity coefficients is not thought to be plausible in
view of mathematical and physical aspects. That means that the
logarithms of the individual activity coefficients of comple-
mentary ion species should be linearly dependent on the
concentration in this range 5≤m≤10 mol/kg. This fact is
considered by the second summands in both of the factor
functions in (18).

Nonetheless, the consequence of this exception when
calculating the individual activity coefficients will be
discussed later (see "Impact of a hypothetic multiplicative
concentration function G" section). A predefinition was not
established for the concentration range between infinite
dilution and 5 mol/kg. The values in this concentration
range result from the sum of the first and the second
summand in the factor functions in (18). Accordingly, when
compared with data of the mean activity coefficients from
the literature, the product of the calculated individual
activity coefficients in this range demonstrates a criterion
for successfully adjusting the experimentally obtained mean
activity coefficients. Thus, the approach (18) is derived
from mathematical considerations and differs in principle
from the classical approximation of the mean activity
coefficient to the concentration curve (see (5) and (6),
respectively, and footnote 1).
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The determination of the parameters

If only the first summand is considered in both factor
functions (see (10)), the nonlinear least squared yields a
great many sets of best fit independent parameters that
minimize the squared deviations of gC � gA from g2�.

Fortunately, the data for the individual activity coefficients
are known at concentration zero. These limiting infinite
dilution conditions (12) and (14) clearly require for (10):
c1=c2=1 and c7=c8=−A′. These values are strictly valid only
at infinite dilution where the activity coefficients have the
same size as well as the same slope. This is valid for all ionic
species with the same charge number. Thus, the resulting
relationship agrees with the Debye–Hückel limiting law
equation. It is necessary to take into consideration the first
two summands in both factor functions when factorizing the
mean activity coefficient as the electrolyte concentration
approaches zero, too (see "Consideration of the first two
summands" section). It is important to bear in mind the fact
that the product function parameters in (3) and (4),
respectively, change when an additional summand is
included in both factor functions because the system of
functions is not orthogonal. This means for (18) compared to
(10): c1≠c2≠1 and c7≠c8≠−A′, but the limiting infinite
dilution conditions (12) and (14) clearly require for the
parameters in (18): c1 ¼ b1; c2 ¼ b2; c7 ¼ � A0

b1
, c8 ¼ � A0

b2
,

and c3 ¼ 1� b1ð Þ; c4 ¼ 1� b2ð Þ as well. The nonlinear
least squared yield for approach (20), just like the optimiza-
tion of (10), many sets of best fit independent parameters
b1,…,b4 of gCðmÞ � gAðmÞ for g2�ðmÞ as a consequence of the
ill-condition of coefficient matrix. All combinations are
nearly equally suitable for fitting the concentration curve of
the mean activity coefficients (see "Mathematically correct
solutions and physicochemically reasonable results" section).
This problem is solved with the help of the previously
developed asymptotic theory [20, 26]. A successive estima-
tion of the parameters is univocally possible (see "Splitting
of mean activity coefficients into individual parts for
complementary ion species by using the asymptotic theory"
section). Stable and reproducible results are attained by using
the asymptotic theory. The parameter combination is
invariant. The basic product approach (20) is to unequivo-
cally split into factor functions (see "Splitting of mean
activity coefficients into individual parts for complementary
ion species by using the asymptotic theory" section).

The parameters b1 and b2 and the sum (b3 + b4) can be
determined directly with the asymptotic theory (see
"Splitting of mean activity coefficients into individual parts
for complementary ion species by using the asymptotic
theory" section). The determination of b1 and b2 is shown
in Fig. 5 with the functions (32) and (33).

The ill-condition of (20) unfavorably influences the
separation of the sum (b3 + b4) in summands only. But the

variation width of b3 and b4 is limited during the separation
of the sum (b3 + b4) which is considered as a function of b3
only because b1, b2 and the sum (b3 + b4) have already been
determined. The separation of the sum (b3 + b4) is carried
out using the Fibonacci search technique [44] in the range of
the strongest curvature of the γ±-m curve (0≤m≤5 mol/kg).

The allocation of the determined factor functions to
cation or anion is clearly decided with the help of mixed
electrolyte solutions (see "On the allocation of the factor
functions to the cation or anion" section).

Impact of a hypothetic multiplicative concentration
function G

The impact of the exceptional case mentioned above is
discussed based on the calculation of individual activity
coefficients as follows.

The factorizing of g2�ðmÞ using the asymptotic theory is
univocal. Thus, it is obtained only one unique pair of factor
functions. This pair represents the factor functions of the
mathematical approach γC (m) and γA (m), and it cannot be
any other pair of factor functions because the parameters of
the approach are determined directly with the help of the
asymptotic theory. Nevertheless, it is to consider the fact
that the result could be ambiguous assuming a hypothetic
concentration function G is valid. The condition is then
following:

gCðmÞ � G � gAðmÞ � G�1 ¼ g
»

CðmÞ � g
»

AðmÞ or vice� versa: ð40Þ

This conforms to an ‘extension’ of the product function
(20):

Considering the product function (20) in logarithmic
form is confusing when dealing with this topic.

In the case of an “extension” of the basic product
approach (20), multiplication or division of both factor
functions have to be certainly valid for each separated
summand in the factor functions:

g2�ðmÞ ¼ g
»

CðmÞ � g
»

AðmÞ
¼ b1e

�A0
b1
�m1

2 � Gþ ð1� b1Þeb3�m � G
� �

� b2e
�A0

b2
�m1

2 � G�1 þ ð1� b2Þeb4�m � G�1

� �

g
»

CðmÞ;g
»

AðmÞ : “modified factor functions of cations and

canions”

g
»

CðmÞ ¼ gCðmÞ � G; g»

AðmÞ ¼ gAðmÞ � G�1
h i

ð41Þ

This case has already been the subject of previous
discussion [46, 47]. The question examined in this context
was whether or not the individual ionic activity coefficients
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calculated using the asymptotic theory are unsuitable due to
the mathematical “extension” of the basic product
approaches (20) and (21) with an arbitrary function G [46,
47]. It was proven that such a hypothetical function G
cannot be chosen anyway, since it is constrained to the
following function type [46]:

G ¼ eK�m
w

K;w ¼ constantsð Þ ð42Þ
This hypothetical functionG would have to have an almost

universal character for all electrolytes that make the a priori
existence of such a function improbable [25, 46]. The
verification of the exclusion of a possible “extension” of the
basic product approaches (20) and (21), respectively, whereby
G ¼ eK�m

w
can be reduced to the demonstration K=0.

It was shown in "Consideration of only the first
summand" section that the basic product approach (3),
containing only the first summand in both factor functions,
has to be identical to the Debye–Hückel limiting law
equation. Results for the corresponding first summands
con s i s t o f t h e e xp r e s s i o n s e�A0� ffiffiffi

m
p

� eK�mw
and

e�A0� ffiffiffi
m

p
� e�K�mw

, respectively, after “extension” with the
hypothetical function G ¼ eK�m

w
. Identity with the Debye–

Hückel limiting law exists for m>0 only at K=0. Moreover,
an activity coefficient of a strong uni-univalent or uni-
bivalent electrolyte cannot be lower than what the Debye–
Hückel limiting law permits (see footnote 2). It also follows
that K=0. Therefore, possible “extension” of the basic
product approaches is excluded in principle.

Factorizing the mean activity coefficient into individual
parts for a single-ion species using the asymptotic theory is
actually univocal. By the exclusion of additional multiplica-
tive terms, it is proven that the results comply in all probability
with the physicochemical reality and are not a random pair of
factor functions. The results are conformable with experimen-
tally obtained quotients of single-ion activity coefficients in
ternary systems. This is valid for the concentration range
between 0 and 5 mol/kg [14] (see "On the allocation of the
factor functions to the cation or anion" and "Validity of
factor functions has to be calculated using the asymptotic
theory" sections).

Discussion of results using corresponding
approximations

Validity of factor functions has to be calculated
using the asymptotic theory

The lack of consequences of using the corresponding
approximations in the asymptotic theory can be minimized
by iterative refinement [25]. The iteration converges
rapidly. The question is how far the asymptotic theory

generates a systematic error in the result. The resulted linear
course of ln gC and ln gA versus m or J, respectively, at very
high concentrations (m;J>10 mol/kg, see references [14,
20, 24, 25]) which is obtained from asymptotic theory does
not necessarily depict reality.

The basic product approaches (20) and (21), respectively, as
well as the asymptotic theory do not reflect the turning point
which generally can be observed at very high concentrations if
the curve of ln gnþþn�

� versus m or J, respectively, is measured.
Hence, consequences for the calculated curve of the individual
activity coefficients are expected. The effects appear at high
concentrations. Although the consideration of the mean
activity coefficients in the concentration ranges between 5
and ca. 10 mol/kg is necessary for the use of the asymptotic
theory, the scope of the calculated individual activity coef-
ficients has to be limited to concentrations up to 5 mol/kg. This
is a result of the comparisons with quotients of single-ion
activity coefficients that were determined experimentally [14].

The quotients
gCl�ðP=QÞ
gClO�

4

¼ Að Þ and
gHþðQÞ
gNaþðPÞ

¼ Bð Þ can be

determined by factorizing with the help of the calculated
individual activity coefficients for the single-ion species in
the mixed electrolyte solutions. These are compared with
each of the experimentally determined ratio of the single-
ion activity coefficients gCl�

gClO�
4

¼ Cð Þ and gHþ
gNaþ

¼ Dð Þ [14, 21].
The ratio of single-ion activity coefficients is defined
thermodynamically [2, 48]. The curves are shown on a
logarithmic scale in Fig. 8 as a function of mNaClO4 . The
agreement is certainly due to the NaClO4 concentration of
m=5 mol/kg. In light of these findings, it is clear that
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Fig. 8 The quotients
gCl�ðP=QÞ
gClO�

4

ðAÞ and
gHþðQÞ
gNaþðPÞ

ðBÞ obtained by splitting of

mean activity coefficients compared with the experimentally determined

quotients of the single-ion activity coefficients
gCl�
gClO�

4

ð¼ CÞ and gHþ
gNaþ

ð¼ DÞ
on a logarithmic scale as a function of the NaClO4 concentration
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plausible results are achieved with the asymptotic theory in
the concentration range 0≤m≤5 mol/kg.

As Ferse has shown for other electrolyte systems also [14],
the experimentally determined quotients of individual
activity coefficients of single-ion species in especially
composed electrolyte mixtures agree with quotients of
calculated individual activity coefficients determined using
the asymptotic theory. The agreement is excellent between 0
and 5 mol/kg [14]. In all probability, the differences at higher
concentrations are due to the limited validation of the basic
approaches (20) respectively (21) used. It is easy to
understand that the extended basic product approach (26)
with eight parameters cannot be handled with the help of the
asymptotic theory. In this respect, a reliable determination of
the individual activity coefficients of single-ion species above
the concentration of m or J, respectively, ≈5 mol/kg is not
possible in this way. To solve this problem, it is possible to
combine the results of the asymptotic theory with the
factorization of the extended basic product approach (26)
using the non-linear regression model. Test calculations seem
to be successful.

Results obtained by applying the asymptotic theory
compared with other methods for calculating single-ion
activity coefficients

A comparison with results from established methods of
statistical mechanics (mean spherical approximation [MSA],
Monte Carlo data) does not allow exact conclusions to be
drawn about the reliability of results obtained with the help of
asymptotic theory. It is more difficult to detect the real
conditions in an electrolyte solution quantitatively and
without randomness as the distance from the Debye–Hückel
range increases. All methods for estimating the excess Gibbs
energy of an electrolyte in solution are based on models that
are only effective for limited concentration ranges. The model
concepts have to be modified if the results do not comply
closely enough with the measured data.

The use of asymptotic theory is a purely mathematical
method; therefore, (1) it is independent of a model for
interpreting the microscopic structure of an electrolyte
solution and (2) it is not limited to detecting and calculating
all forming interaction forces in an electrolyte solution. The
problems caused by applying the asymptotic theory are of a
quite different nature. They result from the application of a
purelymathematical method to a real, concrete situation. They
are presented in "Choice of a limited concentration range"
and "Mathematically correct solutions and physicochemical-
ly reasonable results" sections in the present publication. A
practicable way of the solution is described in "Splitting of
mean activity coefficients into individual parts for comple-
mentary ion species by using the asymptotic theory" and
"Discussion of the approach and parameter determination"

section. The results obtained are clear and reproducible. The
purely mathematical procedure is meaningful as an addition
to the established methods of statistical mechanics.

The results obtained by using of asymptotic theory exhibit
the same trend in ranking the individual activity coefficients of
the alkali halides as the MSA [49] and Monte Carlo
simulations [50]. Admittedly, these calculations are limited
to the concentration range 0 up to 1 mol/l. The MSA method
and Monte Carlo simulations are unsuitable at higher
concentrations. The impact of the ionic parameters on the
individual activity coefficients is accepted. Obviously, a
mistake was made when the data of diagram 13 [49] was
compared, since the differences are smaller than seen in the
figure. Perhaps it is not surprising that there are differences
because the activity coefficients represent all deviations from
an ideal state. Besides the size of the ion, the impacts of the
structure of the electrolyte solution and of a number of
additional factors have to be considered. Calculations
conducted with the purely mathematical procedure of
asymptotic theory are independent of such influences.

The Pitzer model [27] is efficient for mean activity
coefficients. Vera et al. modified the Pitzer equations for
single-ion species [51]. The modified equations contain two
parameters which are always valid for one ion species only.
These are fitted from calculated individual activity coef-
ficients. In this respect, they are unsuitable as a basis for
confirming these single-ion activity coefficients. Vera et al.
determined individual activity coefficients using ion-
selective electrodes in electrochemical cells with transport.
The liquid junction potential is taken into account by using
approximated calculations [51, 52]. This is no way to
obtain single-ion activity coefficients [14]. Malatesta [53]
also doubts the correctness of this method. In principle, he
excludes such a possibility of determining individual
activity coefficients. That way it is not astonishing that
the single-ion activity coefficients of Vera et al. [51] do not
agree with the values which were calculated with the help
of asymptotic theory [14, 24, 25].

A new method for measuring individual ionic activity
coefficients is proposed by Zhuo, Dong, Wang, and Wanga
[54]. It was used to obtain single-ion activity coefficients of
sodium halides in aqueous solutions up to about 1 mol/kg.
However, every experimental method to achieve individual
activity coefficients of single-ion species is to be regarded
as incorrect. A critical discussion of this problem is given
by Malatesta in 2010 [55].

Correlations between the calculated individual activity
coefficients and ionic size

The calculated single-ion activity coefficients of anions of
the alkali halides and the alkaline earth halides, which are
determined from the factor functions of the basic
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approaches (20) and (21), respectively, using the asymptotic
theory show a shallow minimum as function of the
concentration [14, 20, 24, 25]. The influence of the anions
on the magnitude of the cation activity coefficients is great.
For instance, at the ionic strength J=3 mol/kg the calculated
single-ion activity coefficients6 of magnesium halides
are [14, 25]:gMgþþðMgCl2Þ ¼ 2:12; gMgþþðMgBr2Þ ¼ 3:75;
gMgþþðMgI2Þ ¼ 7:53; gCl�ðMgCl2Þ ¼ 0:28; gBr�ðMgBr2Þ ¼ 0:29;
gI�ðMgI2Þ ¼ 0:28. In general, with regard to the same cation,
the calculated single-ion activity coefficient is greater for the
anion with the greater radius. But the differences between
their absolute values are small [14, 24, 25]. The complex
perchloric anion is an exception [20, 25]. The calculated
single-ion activity coefficients of chloride anions do not
reach values higher than one in the concentration range up
5 mol/kg (see Table 1). Such an assumption was already
derived from the interpretation of the results of experimental
investigations [48, 56–58]. It is affirmed by the results of
asymptotic theory. The calculated single-ion activity coef-
ficients of Cl− ions of the alkali chlorides are summarized in
Table 1. The minimum of the calculated individual activity
coefficients of the Cl− ions in the ranking from LiCl to CsCl
is striking. A similar minimum may be found in the case of
the activity coefficients of Cl− ions in the homologous series
of the alkaline earth chlorides [25].

The grading in the homologous series of alkali cations
and alkaline earth cations in their chlorides correlates with
the reciprocal ionic diameter of their non-hydrated cations
[14, 24, 25] in agreement with the results by Bates, Staples
and Robinson [4], who suggest this circumstance based on
the hydration hypothesis by Stokes and Robinson [59]. The
smallest alkali cation Li+ exhibits the highest individual
activity coefficient, whereas the large ion Cs+ shows the
lowest single-ion activity coefficient in the alkali chlorides.
The values for the cations of alkali chlorides [14, 24] are
shown in Table 1 also.

By contrast, the relation of the calculated individual activity
coefficients of the cations of the alkali hydroxides is directly
proportional to the diameter of their non-hydrated cations.
They increase with increasing diameter of the non-hydrated
cations [14, 24]. The values of the calculated individual
activity coefficients for alkali hydroxides, e.g., at 5 mol/kg,
are [14, 24]: gCþ ; gCl� ; gCþ ; gCl� . In all probability, the
contrast results from the exceptional position in the behavior
of the hydroxide ions (and hydrogen ions) in the solvent
water. It is known that the surplus hydroxide ions and protons
as they exist in aqueous basic and acidic solutions need only
very low activation energy to jump from one water molecule
to another [60]. The transition frequency is on the order of
magnitude 1012 s−1 [61].

Every water molecule has a very high affinity to OH− or H+

ions, respectively. Therefore, in temporal average, every
single water molecule has a negative or positive partial
charge if it is in alkaline or acidic solutions. This model
allows the forming of a specific electrostatic interaction
between the partial charges of the water molecules among
each other and between the partial charges of the water
molecules in the hydration sphere and the charges of cations
of the alkali hydroxides or the anions of the acids [14, 21,
24, 60, 62]. This model explains also the unusual ranking of
the calculated individual activity coefficients not only of the
cations of the alkali hydroxides but also of the halide anions
in hydrohalic acids [14, 24]. The small anion Cl− of the
hydrochloric acid has the largest individual activity coeffi-
cient, the anion I− of the hydroiodic acid the lowest one. The
calculated individual activity coefficients of the hydrogen
ions of the hydrohalic acids increase extremely with rising
concentration [14, 24] (see Table 2): Certainly, electrostatic
forces cannot be responsible solely for the cause of the
interaction, but in this model, the excess Gibbs energy can be
estimated in good agreement with the experiments in
aqueous acidic and hydroxide solutions on the basis of the
electrostatic interaction [21]. A separate publication contain-
ing a detailed discussion of this topic is in preparation.

Concluding remarks

The individual activity of a single-ion species cannot be
defined thermodynamically nor can it be determined
experimentally. However, this does not mean that one can
simply conclude that the individual activity of a single-ion
species of an aqueous strong electrolyte has no real efficacy
singly. On the contrary, the ratio of the individual activities
of two ion species with the same charge is exactly defined
in thermodynamic terms [2, 48]. Quotients of individual
activities or individual activity coefficients of single-ion
species can also be determined experimentally by implica-
tion using thermodynamically precise methods [14]. The
quotients can differ significantly from 1 [14, 21, 63].
Hence, it is known that the thermodynamic efficacies of
different ionic species with the same charge may differ
from one other by more than one order of magnitude in
electrolyte mixtures of the same composition [14, 21].
These important differences in values between the individ-
ual activity coefficients of different ionic species cannot be
ignored. There is therefore no justification in using mean
activity coefficients for the thermodynamic interpretation of
equilibriums and processes where dissolved electrolytes are
participating. Such a procedure implies the risk of arriving
at erroneous conclusions.

The search for a way out of this dilemma is legitimate and
necessary.

6 According to IUPAC recommendation is the activity coefficient
dimensionless
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The purely mathematical method used to calculate indi-
vidual activity coefficients of single-ion species by factorizing
the concentration curve of mean activity coefficients to the
required power as described in this paper, is based on the
following premises:

1. It is known to be impossible to determine individual
activity coefficients of single-ion species of dissolved
electrolytes solely by using classical thermodynamic
methods. Hence, the inclusion of methods from other
disciplines is necessary to obtain information about the
desired individual activity coefficients of single-ion
species. This approach is justified when the methods
used are as completely logical in their entirety as are

classical thermodynamic methods. The mathematics then
fulfills the requirements.

2. The concentration function for the mean activity
coefficient to the required power must be the product
of the individual concentration functions for the single-
ion activity coefficients of the complementary ionic
species of the dissolved strong electrolyte. The product
function implicitly represents the mathematically ana-
lytical properties of the factor functions.

3. The mathematics affords the asymptotic theory as an
instrument, whereby the clear factorization of the
experimental available concentration curve of the mean
activity coefficients of dissolved strong electrolyte,
certainly to the required power gHþ, is possible in

Table 1 Calculated individual activity coefficients of the single-ion species of alkali chlorides, alkali cations gCþ , and chloride anions gCl� ,
determined by the asymptotic theory, concentration range up to 5 mol/kg

Electrolyte LiCl NaCl KCl RbCl CsCl

Parameters [14] corresponding to basic approach (20) b1 0.1580 0.1991 0.2117 0.2149 0.2180

b2 0.7861 0.7012 0.6949 0.7239 0.7555

b3 0.4143 0.1322 0.00288 −0.0529 −0.2462
b4 0.2057 0.1018 0.07321 0.1150 0.2773

Concentration m [mol/kg]

m=0.001 gCþ 0.967 0.966 0.966 0.966 0.966

gCl� 0.964 0.964 0.964 0.964 0.964

m=0.005 gCþ 0.937 0.933 0.931 0.931 0.930

gCl� 0.922 0.922 0.922 0.922 0.922

m=0.01 gCþ 0.921 0.913 0.910 0.909 0.907

gCl� 0.892 0.892 0.892 0.892 0.892

m=0.02 gCþ 0.904 0.890 0.885 0.884 0.880

gCl� 0.852 0.853 0.853 0.853 0.853

m=0.05 gCþ 0.890 0.860 0.850 0.847 0.838

gCl� 0.779 0.783 0.783 0.782 0.782

m=0.1 gCþ 0.893 0.843 0.825 0.819 0.803

gCl� 0.709 0.715 0.715 0.713 0.714

m=0.5 gCþ 1.04 0.859 0.794 0.769 0.696

gCl� 0.511 0.530 0.528 0.523 0.533

m=1.0 gCþ 1.27 0.915 0.791 0.751 0.612

gCl� 0.440 0.463 0.457 0.453 0.483

m=2.0 gHþ 1.93 1.04 0.793 0.706 0.478

gA� 0.418 0.432 0.417 0.421 0.511

m=3.0 gCþ 2.92 1.19 0.795 0.670 0.374

gCl� 0.456 0.444 0.418 0.434 0.613

m=4.0 gCþ 4.42 1.36 0.797 0.635 0.292

gCl� 0.527 0.474 0.433 0.466 0.775

m=5.0 gCþ 6.68 1.55 (0.800) 0.603 0.228

gCl� 0.626 0.514 (0.456) 0.510 1.00

References for mean activity coefficients [36, 64] [36, 64] [36, 64] [36, 64] [36, 64]
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principle in the individual functions for the cation and

anion.
4. Models for interpreting the microscopic structure of the

electrolyte solutions and for detecting and calculating
all forming interaction forces are needless.

5. As the concentration approach zero, the Debye–Hückel
limiting law equation becomes valid for aqueous strong
electrolytes as accuracy improves.

The results obtained by purely mathematical procedure are
plausible. They show the expected correlation with ion
parameters such as those determined by estimating the excess
Gibbs energy for model concepts using statistical mechanics.

It is possible to compare the obtained results by applying
the asymptotic theory with experimental values. The ratio of

single-ion activity coefficients can be determined experimen-
tally and also defined thermodynamically. Experimentally
determined quotients of individual activity coefficients of
cations and anions, respectively, prove the distinctive differ-
ences in values within the individual activity coefficients of
different ionic species with the same charge in electrolyte
mixtures of the same composition, especially for different
cations, at higher concentrations [14, 21, 63].

Good agreement was found without exception between
calculated and experimentally determined quotients of the
single-ion activity coefficients for all investigated electro-
lyte systems in the concentration range between 0 and
5 mol/kg (see "On the allocation of the factor functions to
the cation or anion" and "Validity of factor functions has to
be calculated using the asymptotic theory" sections).

Table 2 Calculated individual activity coefficients of the single-ion species of hydrohalic acids, hydrogen cations gHþ and halide anions gA� ,
determined by the asymptotic theory, concentration range up to 5 mol/kg

Electrolyte HCl HBr HI

Parameters [14] corresponding to basic approach (20) b1 0.1570 0.1322 0.1251

b2 0.6718 0.7895 0.7673

b3 0.2927 0.6717 0.7745

b4 0.3112 0.2046 0.1744

Concentration m [mol/kg]

m=0.001 gHþ 0.967 0.968 0.969

gA� 0.964 0.964 0.964

m=0.005 gHþ 0.937 0.941 0.943

gA� 0.923 0.922 0.922

m=0.01 gHþ 0.920 0.928 0.931

gA� 0.893 0.892 0.892

m=0.02 gHþ 0.903 0.917 0.922

gA� 0.855 0.851 0.852

m=0.05 gHþ 0.885 0.916 0.925

gA� 0.788 0.779 0.780

m=0.1 gHþ 0.883 0.936 0.952

gA� 0.726 0.709 0.710

m=0.5 gHþ 0.977 1.21 1.29

gA� 0.579 0.510 0.515

m=1.0 gHþ 1.13 1.70 1.90

gA� 0.566 0.437 0.444

m=2.0 gHþ 1.51 3.33 4.12

gA� 0.669 0.414 0.418

m=3.0 gHþ 2.03 6.51 8.93

gA� 0.868 0.449 0.447

m=4.0 gHþ 2.72 12.7 19.4

gA� 1.16 0.518 0.504

m=5.0 gHþ 3.64 24.9 42.0

gA� 1.57 0.614 0.582

References for mean activity coefficients [65] [65] [65]
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Certainly, agreement alone does not validate the fact that
the single-ion activity coefficients can actually be calculated
using the purely mathematical procedure described above.
Conclusiveness, however, is given because the possible
existence of additional multiplicative terms can be excluded
in the light of the calculated values (see "Discussion of the
approach and parameter determination" section).

Moreover, the theoretically required agreement of the
corresponding factor functions in three-component systems
was found in deed (see "On the allocation of the factor
functions to the cation or anion" section). This finding
cannot be called coincidental. On the contrary, the results
are an additional conformation that individual activity
coefficients of single-ion species are achieved with the
purely mathematical method as described in the present
paper.
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